Variable weight algorithm for convolutional neural networks and its applications to classification of seizure phases and types

نویسندگان

چکیده

Deep learning techniques have recently achieved impressive results and raised expectations in the domains of medical diagnosis physiological signal processing. The widely adopted methods include convolutional neural networks (CNNs) recurrent (RNNs). However, existing models possess static connection weights between layers, which might limit generalization capability classification performance as different layers are fixed after training. Furthermore, to deal with a large amount data, network sufficiently size is required. This paper proposes variable weight (VWCNNs), type structure employing dynamic instead their fully-connected layers. VWCNNs able adapt characteristics input data can be viewed an infinite number traditional, fixed-weight CNNs. We will show that proposed VWCNN outperforms conventional CNN terms accuracy, capability, robustness when inputs contaminated by noise. In this paper, applied three seizure phases (seizure-free, pre-seizure seizure) based on measured electroencephalography (EEG) data. achieve 100% test accuracy strong phases, thus potential useful tool for diagnosis. seven types seizures investigated using world’s largest open source database recordings, TUH EEG corpus. Comparisons CNNs, RNN, MobileNet, ResNet, DenseNet traditional machine including random forest, decision tree, support vector machine, K-nearest neighbours, standard networks, Naïve Bayes being conducted realistic sets. demonstrate advantages over other classifiers robustness.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

petrology and geochemistry of khar-bash (western shahrood) and its relation ship to iron mineralization

منطقه مورد مطالعه در 23 کیلومتری جنوب غرب شهرستاشاهرود قرار دارد که در نقشه 100000/1 شاهرود قرار گرفته است.ناحیه مورد مطالعه در تقسیمات ساختاری ایران بخشی از زون البرز شرقی است . در طی سنوزوئیک این زون به شدت تحت تأثیر فازهای کوهزایی آلپی قرار گرفته و فعالیت های آتشفشانی انوسن در قسمت های غربی آن دیده می شود . از نظر ترکیب سنگ شناسی منطقه مورد مطالعه متنوع و بیشتر شامل سنگ های رسوبی مانند : آ...

15 صفحه اول

construction and validation of translation metacognitive strategy questionnaire and its application to translation quality

like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...

Variable weight neural networks and their applications on material surface and epilepsy seizure phase classifications

This paper presents a novel neural network having variable weights, which is able to improve its learning and generalization capability, to deal with classification problems. The variable weight neural network (VWNN) allows its weights to be changed in operation according to the characteristic of the network inputs so that it demonstrates the ability to adapt to different characteristics of inp...

متن کامل

Dynamic Weight Alignment for Convolutional Neural Networks

In this paper, we propose a method of improving Convolutional Neural Networks (CNN) by determining the optimal alignment of weights and inputs using dynamic programming. Conventional CNNs convolve learnable shared weights, or filters, across the input data. The filters use a linear matching of weights to inputs using an inner product between the filter and a window of the input. However, it is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2022

ISSN: ['1873-5142', '0031-3203']

DOI: https://doi.org/10.1016/j.patcog.2021.108226